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Sub-Network Kernels for Measuring Similarity
of Brain Connectivity Networks

in Disease Diagnosis
Biao Jie , Mingxia Liu, Daoqiang Zhang, and Dinggang Shen, Fellow, IEEE

Abstract— As a simple representation of interactions among
distributed brain regions, brain networks have been widely
applied to automated diagnosis of brain diseases, such as
Alzheimer’s disease (AD) and its early stage, i.e., mild cognitive
impairment (MCI). In brain network analysis, a challenging task
is how to measure the similarity between a pair of networks.
Although many graph kernels (i.e., kernels defined on graphs)
have been proposed for measuring the topological similarity
of a pair of brain networks, most of them are defined using
general graphs, thus ignoring the uniqueness of each node in
brain networks. That is, each node in a brain network denotes
a particular brain region, which is a specific characteristics
of brain networks. Accordingly, in this paper, we construct a
novel sub-network kernel for measuring the similarity between
a pair of brain networks and then apply it to brain dis-
ease classification. Different from current graph kernels, our
proposed sub-network kernel not only takes into account the
inherent characteristic of brain networks, but also captures multi-
level (from local to global) topological properties of nodes in
brain networks, which are essential for defining the similarity
measure of brain networks. To validate the efficacy of our
method, we perform extensive experiments on subjects with
baseline functional magnetic resonance imaging data obtained
from the Alzheimer’s disease neuroimaging initiative database.
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Experimental results demonstrate that the proposed method
outperforms several state-of-the-art graph-based methods in MCI
classification.

Index Terms— Graph kernel, brain network, Alzheimer’s dis-
ease (AD), mild cognitive impairment (MCI), classification.

I. INTRODUCTION

AS A NEURODEGENERATIVE disorder, Alzheimer’s
disease (AD) is the most common form of dementia

in elderly population worldwide, which usually starts slowly
and gets worse over time. In general, AD leads to substan-
tial, progressive neuron damage that is irreversible, which
eventually causes death. Recently, a prodromal stage of AD
called mild cognitive impairment (MCI) has gained increasing
attention, due to its high probability of progression to AD. It is
reported the patients with MCI will progress to clinical AD at
an annual rate of approximately 10% to 15%, while normal
controls (NCs) will develop dementia at an annual rate of 1%
to 2% [1]. In addition, disease-modifying therapies, given to
patients at the early stage of their disease development, will
have better effect in slowing down the disease progression
and helping preserve some cognitive functions of the brain.
Thus, accurate diagnosis of MCI is very important for early
treatment and possible delay of AD progression.

A large amount of evidences from both anatomical and
physiological studies suggest that cognitive processes depend
on interactions among distributed brain regions [2]. In the
past years, some new emerging medical imaging techniques,
such as modern magnetic resonance imaging (MRI) and func-
tional MRI (fMRI), have provided non-invasive ways to map
the patterns of structural and functional interaction of brain
regions [3], [4]. These interaction patterns can be characterized
as brain networks, thus helping us better understand the patho-
logical underpinnings of neurological disorder by exploring
connectivity in brain networks. For example, fMRI provides
an opportunity to quantify functional interaction by mea-
suring the correlation between intrinsic blood oxygen level-
dependent (BOLD) signal fluctuations of distributed brain
regions at rest. Accordingly, functional connectivity networks
have been widely used in brain disease analysis [5]–[7].

Among various studies for brain network analysis, graph
theory provides an effective solution to concisely quantify the
connectivity properties of networks, where each node denotes
a particular anatomical element (e.g., a brain region) and each
edge represents the relationship (e.g., connectivity) between a
pair of nodes. However, different from traditional data that can
be represented in a feature space, data in the form of graph
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Fig. 1. Examples of brain networks illustrating a normal control (left) and
a MCI patient (right). Note that some connections in the patient’s network
have been changed. These two brain networks are isomorphic when ignoring
the label information of each node; thus, the similarity between these two
networks without using label information will be not their actual similarity.

cannot be directly represented by feature vectors. Hence, it is
challenging to determine how to compare (i.e., measure the
similarity of) a pair of graphs, which is a fundamental problem
in graph-based analysis. To deal with this problem, many
studies have been focused on defining the similarity among
graphs (i.e., networks) in the last decade.

Among various methods for computing the graph similarity,
kernel methods [8] offer a natural framework to study this
problem. In particular, graph kernels, i.e., the kernels con-
structed on graphs, have been proposed and applied to brain
network analysis. However, most of the existing graph kernels
ignore the uniqueness of each node in brain networks, which
is an inherent characteristics of brain networks. That is, after
registering brain images of all subjects into a common space,
each node in the brain networks is uniquely corresponding
to a specific brain region (denoted by a letter or number,
called as label of the node). Previous graph kernels seldom
take advantage of the uniqueness of each node, due to the
difficulty of computing the similarity between brain networks.
Fig. 1 illustrates an example of brain networks for a NC and
an MCI patient, where each node corresponds to a specific
brain region (denoted by a letter). Since the connections
in the patient’s brain network have been affected by the
disease, these two brain networks in Fig. 1 are isomorphic
if ignoring the label information of each node. Obviously,
based on the existing graph kernels without using the label
information, the similarity of two networks can not reflect the
real topological characteristics of these networks.

Numerous studies have suggested that neurodegenerative
diseases (e.g., AD and MCI) are related to connectivity among
specific brain regions [6], [9], [10]. Therefore, both local
and global topological properties on brain regions are very
important for brain network analysis. Figure 2 illustrates the
discriminative power of each connection in brain networks
between 99 MCI patients and 50 normal controls using the
standard t-test on a real dataset from Alzheimer’s disease
Neuroimaging Initiative (ADNI).1 The characteristics of these
subjects and the corresponding brain networks are presented in
Sections III-A and III-B, respectively. Here, Fig. 2 (a) shows
the obtained p-values on all connections, and Fig. 2 (b) shows
the thresholded p-values (i.e., by setting p-values more than

1http://adni.loni.usc.edu/

Fig. 2. The discriminative power of each connection in brain networks
in identification 99 MCI patients and 50 normal controls using the standard
t-test on a ADNI database. (Left) The p-values on connections between all
pairs of brain regions (or graph nodes). (Right) The corresponding thresholded
p-values (i.e., by setting p-values more than 0.05 to 1).

0.05 to 1). From Fig. 2 (a)-(b), it can be seen that lots of
discriminative connections (with their corresponding p-values
less than 0.05) mainly distribute on several specific brain
regions. Intuitively, exploring both local and global connec-
tivity properties of brain regions can construct more effective
kernels for measuring the similarity of brain networks. To the
best of our knowledge, we are among the first to exploit both
local and global connectivity properties of brain regions to
construct graph kernels for measuring the similarity of brain
networks.

Motivated by a recent work in [11], in this paper, we pro-
pose a novel sub-network kernel on brain networks for brain
disease classification. Specifically, we first construct a group
of sub-networks on each node to reflect the multi-level
(i.e., from local to global) connectivity properties of brain
networks. Then, we define the similarity of a pair of brain
networks, by calculating the similarities of all corresponding
pairs of sub-network groups when considering the uniqueness
of nodes. Different from traditional graph kernels, our sub-
network kernel not only takes into account the inherent char-
acteristics of brain network, but also captures the multi-level
topological properties on nodes of brain networks. We evaluate
our proposed method on 183 subjects with the baseline resting-
state fMRI (rs-fMRI) data from the ADNI database, which
contains 50 normal controls, 99 MCI patients and 34 AD
patients. The experimental results demonstrate the efficacy of
our proposed method.

The main contributions of this paper are three-fold. First,
we define a novel sub-network kernel for measuring the simi-
larity between brain networks. To the best of our knowledge,
our proposed method is among the first attempts to build brain-
network-oriented kernel by utilizing the specific characteristics
of brain network. Second, we develop a sub-network kernel
based learning (SKL) framework for automated brain disease
diagnosis based on fMRI data. Finally, we provide an imple-
mentation for performing inference on brain network data.

The rest of the paper is organized as follows. In Section II,
we briefly review the related studies. Then, we describe the
data used in current study, and present the proposed method
and classification framework in Section III. In Section IV,
we introduce experimental setting and results. In Section V,
we give discussions for the experimental results, the influence
of parameters, and the limitation of our method. Finally,
we conclude this paper in Section VI.
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II. RELATED WORKS

A. Graph-Based Methods

Graph theory has been successfully applied to investigate
brain networks related to various diseases [12], [13]. For
example, studies have investigated the local connectivity prop-
erties of brain networks for AD/MCI patients by using graph-
theory-based approaches, and reported a series of abnormal
structural and functional connectivity, including the disrupted
functional connectivity between the hippocampus and other
brain regions [14], [15], and also the decreased functional
connectivity with a network of posterior cingulate cortex,
temporoparietal junction, and hippocampus [16]. Also, other
studies have investigated the global topological characteristics
of functional brain networks, and found that the small-world
characteristics (i.e., high degree of clustering and short path
length) have been disrupted in AD patients [9]. Besides,
a similar study has also investigated the topological orga-
nization of brain networks in the apolipoprotein E epsilon
4 allele (APOE-4) carriers, where APOE-4 is a major genetic
determinant for AD [17]. More recently, graph theory has been
applied to automatic diagnosis of brain diseases, e.g., AD and
MCI [18]–[21].

Compared with other brain network analysis approaches,
graph theory offers two important advantages [6]. First, it pro-
vides quantitative measurement of each node, which can
preserve the connectivity information in the network and thus
reflect the segregated and integrated nature of local brain
activity. For example, the clustering coefficient [22], which
quantifies the degree to which nodes in a graph tend to
cluster together, is one of the simplest and most common
measures of functional segregation in brain network analysis.
Researchers have investigated the local clustering properties
of functional connectivity networks, and found the disruption
of local clustering in AD/MCI patients [14], [15]. This may
indicate that the functional connectivity network becomes less
modular and thus the efficient organization for information
transferring is lost for AD/MCI patients [15], [19], [23].

Another advantage of graph theory is that it provides a
general framework for comparing heterogeneous graphs con-
structed using different types of data (e.g., anatomical and
functional data). Therefore, graph theory shows great promise
to disentangle how various pathological processes in brain
diseases develop, and provides a possible way to identify
image-based biomarkers for automated diagnosis of brain
diseases [6], [7], [24]. For example, the clustering coefficients
from structural and functional connectivity networks have been
used for the classification of MCI individuals [7], [25].

B. Network Similarity Measurement

Among various network similarity measurement methods,
one simple and straightforward approach is to extract some
local measures of networks (e.g., edge weights, path lengths,
and clustering coefficients) as feature vectors for comput-
ing network similarity and performing network analysis. For
example, Chen et al. [26] used connectivity strengths between
the brain region pairs as features for AD/MCI classification.
Wee et al. [27] extracted clustering coefficients from white

matter connectivity networks as features for identification of
MCI patients. Zanin et al. [28] explored sixteen topological
features from functional connectivity networks to find the opti-
mal network representation. Also, Tijms et al. [6] investigated
13 graph properties and examined which properties have been
consistently reported to be disturbed in AD studies by using
group analysis. These studies demonstrate the advantages of
graph theory in neuroimaging data analysis. However, these
methods usually composite the local topological measures of
brain networks as feature vectors, and thus lose their global
topology characteristics.

In addition, kernel methods offer a natural framework to
study the similarity of networks. Informally, a kernel is a
function that measures the similarity between a pair of objects,
which mathematically corresponds to an inner product in a
reproducing kernel Hilbert space [8], [29]. Once a kernel
is defined, many learning algorithms such as support vector
machines (SVM) can be applied directly, which facilitates
the subsequent classification/regression tasks. In the litera-
ture, graph kernels, i.e., the kernels constructed on graphs,
have been proposed and applied to diverse fields including
neuroimaging studies [30]–[32], image classification [33],
and protein function prediction [34]. Kernel methods have
been recently applied to brain network classification, such
as classification of patients with brain disease and normal
controls [35]–[37] as well as classification of task-related state
and resting state [30].

Graph kernels are instances of the family of so-called
R-convolution kernels by Haussler [38]. Most of graph ker-
nels are defined via comparing small sub-graphs such as
walks [39], paths, or graphlets [40]. Since searching for
structural similarities in a pair of graphs is often computa-
tionally expensive, some researchers explore graph kernels
with lower computational complexity by using computational
techniques [41]. Recently, researchers have defined an effec-
tive graph kernel via building a new mathematical representa-
tion for graphs [11]. Other researchers have also constructed
graph kernels by using geometric embedding approach [42].
Compared with feature-based methods, kernel-based methods
can capture both local and global topological properties of
graphs, and thus usually achieve better performance in brain
network classification. In general, the existing graph kernels
can be roughly divided into two categories: 1) kernels defined
on unlabeled graphs where each node has no distinct iden-
tification except using their interconnectivity, such as graph
kernels in [11], [40], and [42]; 2) kernels defined on labeled
graphs where each node is labeled with different letter, such
as graph kernels used in [41] and [39]. Note that some graph
kernels, e.g., those used in [43], can be defined on both labeled
graphs and unlabeled graphs.

In the first category, graph kernels defined on the unlabeled
graphs can also be used for computing the similarity of labeled
graphs by ignoring their label information, but this may make
those graph kernels not able to compute the actual similarity of
labeled graphs. See Fig. 1 for example, where graph kernels
defined on unlabeled graphs will fail to measure the actual
similarity of two brain networks in Fig. 1. Besides, most graph
kernels in the second category are not suitable to compare
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Fig. 3. Illustration of the sub-network kernels based learning (SKL)
framework.

the similarity of a pair of brain networks, because some
graph kernels are infeasible for brain networks due to their
computational complexity [39], [44]. Also, some graph kernels
in this category cannot be computed on the brain networks.
For instance, graph kernels in [44] are used to compare
graphs with edge labels, and graph kernels in [41] are used
to compare graphs with continuous-valued node labels. Other
graph kernels such as those in [43] are constructed based on
the Weisfeiler-Lehman test of graph isomorphism. However,
no graph isomorphism problem exists, when considering the
specific information of each node on brain networks.

To address these problems, in this paper we propose a novel
sub-network kernel for measuring similarity of brain networks.

III. MATERIALS AND METHOD

Figure 3 illustrates our proposed sub-network kernel based
learning (SKL) framework for brain disease classification,
which includes three main steps: (1) image preprocessing and
connectivity network construction, (2) network thresholding
and sub-network kernel construction, and (3) classification.
In this section, we first introduce the data used in this study,
and then present the details of each step in our proposed
framework.

A. Subjects

In this study, we use a total of 183 subjects, which includes
50 normal controls, 99 MCI patients and 34 AD patients,
each with fMRI. Among 99 MCI subjects, there are 56 early
MCI (EMCI) and 43 late MCI (LMCI) subjects. Table S1 in
the Supporting Information gives the ID of those subjects.
All rs-fMRI data were acquired on 3.0 Tesla Philips scan-
ners (with varied models/systems) at multiple sites. There
is a range for imaging resolution in X and Y dimensions,

TABLE I

CHARACTERISTICS OF THE SUBJECTS (MMSE ± STANDARD
DEVIATION). MMSE: MINI-MENTAL STATE EXAMINATION

which is from 2.29 mm to 3.31mm and the slice thickness
is 3.31mm. TE (echo time) for all subjects is 30ms and
TR (repetition time) is from 2.2s to 3.1s. For each subject,
there are 140 volumes (time points). All rs-fMRI data can
be downloaded from the ADNI database. Table I reports the
demographic and clinical information of the studied subjects.

B. Image Preprocessing and Network Construction

We perform image pre-processing for all rs-fMRI data
using a standard pipeline, including brain skull removal,
slice time correction, motion correction, spatial smoothing,
and temporal pre-whitening using FSL FEAT software pack-
age (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FEAT). Specifically,
the acquired rs-fMRI images are corrected for the acquisition
time difference among all slices. All images are then aligned
to the first volume for motion correction and a brain mask
is also created from the first volume. At last, the global drift
removal and band pass filtering between 0.01Hz–0.1Hz are
performed using tool in [45]. The pre-processing steps of
the T1-weighted data include brain skull removal and tissue
segmentation into gray matter (GM), white matter (WM), and
cerebrospinal fluid (CSF) using FSL FAST software package
(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FAST). The pre-processed
T1 image is then co-registered to the first volume of the pre-
processed rs-fMRI data of the same subject and the BOLD
signals in GM are merely extracted and adopted to avoid
the relatively high proportion of noise caused by the cardiac
and respiratory cycles in WM and ventricle [46]. Finally,
the whole brain of each subject in rs-fMRI space is parcellated
into 90 regions of interest (ROI), by warping the automated
anatomical labeling (AAL) template [47] to the rs-fMRI image
space of each subject using the FSL FLIRT software package
(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT). For each of the
90 ROIs, the mean rs-fMRI time series was calculated by
averaging the GM-masked BOLD signals among all voxels
within the specific ROI. Finally, we use Pearson correla-
tion coefficients to build functional connectivity between the
ROIs. Specifically, for each subject, we construct a fully-
connected functional connectivity network, where each node
corresponds to a particular ROI and the edge weight is the
Pearson correlation coefficient of a pair of specific ROIs. Then,
we apply Fisher’s r-to-z transformation on the elements of the
functional connectivity network to improve the normality of
the correlation coefficients.

C. Proposed Sub-Network Kernel

In this section, we first introduce some related notations.
Then, we briefly introduce the existing studies in [11].
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Motivated by that work, we propose our graph kernels. In the
rest of the paper, we use P i j to denote the entry (i, j) of
matrix P .

Defintion 1 (Graph): A graph G can be defined as a pair,
i.e., G = (V , E), where V is a set of nodes, and E is a set of
edges between nodes, i.e., E ⊆ {(u, v)|u, v ∈ V }.

Defintion 2 (Sub-Graph): A graph G′ = (V ′, E ′) is a
subgraph of another graph G = (V , E) iff V ′ ⊆ V and
E ′ ⊆ {(u, v)|(u, v) ∈ E ∧ u, v ∈ V ′}

According these definitions, the graph and sub-graph are
binary graph, there is no weight information on edges in
graph or sub-graph. We denote W ∈ RN×N as the adjacency
matrix for a graph G, where W i j = 1 if there has an edge
between nodes i and j ; otherwise, W i j = 0. And, N is
the number of nodes in G. To effectively represent a graph,
Shrivastava and Li [11] defined a symmetric positive semi-
definite covariance matrix C ∈ Rd×d with

C i j = cov(
N W i e

‖W i e‖1
,

N W j e

‖W j e‖1
) (1)

where cov denotes the covariance between two vectors, W i e
denotes the i -th power iteration of matrix W on a given starting
vector e (i.e., the vector of all ones), and d represents the
number of power iterations, which also controls the number
of algorithm iterations in this new mathematical representation
for the graph G. Also, the term ‖·‖1 denotes the l1 norm
of a vector. Here, the set of power iterations on a given
vector v, i.e., {v, Wv, W2v, · · · , Wdv}, is known as the
“d-order Krylov subspace”, which contains sufficient informa-
tion to describe the associated matrix W for some appropri-
ately chosen d . Let v = e which makes the covariance between
different pairs of vectors in the power iteration being “graph
invariant” (i.e., with the same representation for isomorphic
graphs).

Shrivastava and Li [11] have argued that the matrix C can
capture critical information of the underlying graph, including
the spectrum of adjacency matrix W as well as counts of
various sub-structures (e.g., the number of triangles and the
number of small paths, etc.), and owns many good properties,
such as graph invariant. According to the definition in Eq. 1,
different kinds of graphs or sub-graphs can be represented in
a common mathematical space and thus directly compared to
each other.

Motivated by this work, we propose a novel sub-network
(i.e., sub-graph) kernel for measuring similarity between a pair
of brain networks. Specifically, we first construct a group of
sub-networks on each node to reflect the multi-level (i.e., from
local to global) connectivity properties of a brain network.
Then, we can compute the similarity of brain networks by
calculating the similarities of all pairs of sub-network groups
from the same node across different brain networks, since each
node in a brain network is corresponding to a particular brain
region and is thus unique.

Specifically, we denote G = (V , E) and H = (V , E ′)
as a pair of brain networks (i.e., corresponding thresholded
functional-connectivity-networks in current studies, as shown
in Fig. 3), where V denotes the corresponding node set
for both brain networks since they share the same nodes

Fig. 4. Illustration of process of constructing two sub-network sets at the
node B on a pair of brain networks G (left) and H (right) with h = 2. Here,
{G j

B} j=1,2 and {H j
B} j=1,2 are two sub-network sets constructed on node B ,

where G j
B and H j

B are two sub-networks that consist of node B and nodes
with their shortest-path length to B less than or equal to j .

(w.r.t. brain regions). Also, E and E ′ denote the corresponding
edge sets for G and H, respectively. To reflect the multi-level
topological properties of brain networks, we first define two
sets of sub-networks on each node vi in the networks G and
H, i.e.,

Gh
i = {G j

i = (V j
i , E j

i )} j=1,2,··· ,h
Hh

i = {H j
i = (V ′ j

i , E ′ j
i )} j=1,2,··· ,h (2)

where V j
i = {v ∈ V |s(v, vi ) ≤ j}, E j

i = {(u, v) ∈ E |u, v ∈
V j

i }, V ′ j
i = {v ∈ V |s(v, vi ) ≤ j}, E ′ j

i = {(u, v) ∈ E ′|u, v ∈
V ′ j

i }, and s(·, vi ) denotes the length of the shortest-path
between node vi and other. Here, h determines the maximum
of s(·, vi ) (i.e., s(·, vi ) ≤ h), and also defines the number of
sub-networks in the set Gh

i and the set Hh
i .

According to Eq. (2), G j
i denotes a sub-network defined

on the node vi from the original networks G, where V j
i

represents the corresponding node set which consists of node
vi and the nodes with their shortest path length to node vi

less than or equal to j , and E j
i represents the corresponding

set of edges occurred in G. So, G j
i reflects the topological

properties of node vi . And, G j
i with larger value of j usually

contain more nodes and edges, thus reflecting more global
topological properties of node vi . Therefore, the sub-network
set Gh

i = {G j
i } j=1,2,··· ,h reflects the multi-level (i.e., from local

to global) topological properties of node vi . Fig. 4 illustrates
an example of the construction process for two groups of sub-
networks on a specific node. For simplicity, we set sizes of
sub-network sets for all nodes as a constant h. Thus, we can
obtain N sets of sub-networks with the same size for brain
network with N nodes, i.e.,

G = {Gh
1 ,Gh

2 , . . . ,Gh
N }

H = {Hh
1 ,Hh

2 , . . . ,Hh
N } (3)

Given a fixed d , the obtained sub-networks can be rep-
resented in a common mathematical space (i.e., the space
of symmetric positive semidefinite matrices C ∈ Rd×d )
according to Eq. (1), and thus can be compared to each other.
Considering the uniqueness of each node, we can define the
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Algorithm 1 Sub-Network Kernel Construction

kernel on brain networks G and H by computing the similarity
between pairs of sub-networks from the same node, i.e.,

k(G,H) = 1

N

N∑

i=1

f (Gh
i ,Hh

i ) (4)

with

f (Gh
i ,Hh

i ) = 1

h

h∑

j=1

g(G j
i , H j

i ) (5)

and

g(G j
i , H j

i ) = ex p(−1

2
log(|A j

i |/
√

|CG j
i ||C H j

i |)) (6)

where |·| denotes the determinant, CG j
i ∈ Rd×d and C H j

i ∈
Rd×d represent the corresponding covariance matrices, which
are, respectively, defined on the sub-networks G j

i and H j
i by

Eq. (1) via computing the first d terms of power iteration of

their adjacency matrices, A j
i = (CG j

i + C H j
i )/2.

Accordingly, the function in Eq. (6) defines the similarity

of a pair of sub-networks G j
i and H j

i by calculating Bhat-
tacharya similarity between corresponding covariance matrices

CG j
i and C H j

i . Then, the function in Eq. (5) defines the
similarity of pairs of sub-networks from the same node.
Finally, the function in Eq. (4) defines the similarity of pairs
of sub-networks for all nodes, which measures the similarity
of brain networks G and H. The detailed construction process
of proposed graph kernel is summarized in Algorithm 1. Since
the Bhattacharya similarity is positive semi-definite, the kernel
defined in Eq. (4) is also positive semi-definite kernels accord-
ing to the principle of weighted summation kernel [8]. Thus,
the proposed kernel is a valid kernel, and hence can be directly
used in the existing kernel-based methods, such as SVM.

It is worth noting that a set of sub-networks (e.g., Gh
i ) are

constructed on a particular node (e.g., vi ) to reflect the multi-
level topological properties of each node in a brain network,
and the size for the set of sub-networks is decided by h.
Intuitively, the set of sub-networks with larger value of h
can reflect more global topological property (i.e., containing
much more nodes and edges), and Gs

i ⊆ G j
i if s < j (s, j ∈

[1, · · · , h]). Besides, the kernel defined in Eq. (5) computes
the similarity of each pair of sub-network sets constructed on
each node. Therefore, our proposed graph kernel can not only
capture the level-specific-topological properties on nodes of
brain networks, but also take into account the uniqueness of
node. Furthermore, the kernel in Eq. (5) is also a valid kernel,

which measures similarity of specific brain region across brain
networks.

Computation Complexity: The complexity for constructing
sub-networks is O(N2). According to [11], the complexity for
computing the similarity of a pair of sub-graphs (w.r.t. sub-
networks) is O(s j

i d + t j
i d2 + d3), where s j

i and t j
i denote

the maximum number of edges and the maximum number of
nodes on both sub-graphs G j

i and H j
i , respectively. Note that

s j
i < S, t j

i < N , where S and N denote the numbers of edges
and nodes on brain network, respectively. Thus, the total time
complexity in computing the similarity of a pair of connec-
tivity networks is less than O(Nh(Sd + Nd2 + d3) + N2).
Finally, the total time complexity of Algorithm 1 is less than
O(N(S + N) + N2), since d � N and h � N .

D. Sub-Network Kernel Based Learning

1) Discriminative Network Construction: Since the brain
networks of all subjects are full-connected, for improving
classification performance, we first screen out those less dis-
criminative nodes (or brain regions) from the original brain
networks and then construct more discriminative networks.
Specifically, we first extract the local weighted clustering
coefficient ci (i = 1, · · · , N) [22] from the original brain
connectivity network G with N nodes.

ci = 2

di(di − 1)

N∑

j,k=1

(wi j w j kwki )
1/3 (7)

where di is the number of neighboring nodes around node
vi , and wi j represents the weight (i.e., Pearson correlation
coefficient) between node vi and node v j . These extracted
clustering coefficients are composited as a feature vector and
used for subsequent feature selection. Then, we perform a
standard paired t-test to screen out features that are not
significant for discrimination between patients and normal
controls. For instance, given training subjects, the p-value
of each feature is first computed via standard t-test and
then features with p-value larger than a given threshold are
considered as insignificant features and thus removed. Finally,
all surviving features (i.e., brain ROIs) are used to construct
the discriminative network with the same weights of edges as
in the original connectivity network.

2) Network Thresholding: The functional connectivity net-
works and the corresponding discriminative networks of all
subjects are fully connected, with edge weights corresponding
to the Pearson correlation coefficients. To reflect the topolog-
ical properties of discriminative networks, we simultaneously
threshold them with a set of predefined values using the
following formulation:

wm
i j =

{
0, if wi j < Tm

1, otherwise.
(8)

where T = {Tm}m=1,2,··· ,M denotes a set of given thresholds,
and M is the number of thresholds. In this way, the edges
with zero weights will be removed. Here, we select multiple
thresholds instead of a single threshold, since there is no
golden standard to select the optimal threshold. Also, the brain
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networks with multiple thresholds may represent multiple
levels of topological properties (i.e., the networks with larger
threshold often preserve fewer connections and thus are sparser
in connections). These properties may be complementary
to each other in improving the classification performance.
It is worth noting that all nodes are unchanged in network
thresholding step, thus still having the same nodes (i.e., ROIs)
in thresholded networks for all subjects.

3) Multi-Kernel SVM Classification: We compute our pro-
posed sub-network kernels on each thresholded network across
different subjects according to Algorithm 1. Therefore, we can
get multiple kernels with multiple predefined thresholds.
Finally, we adopt a multi-kernel SVM technique used in [48]
for classification, i.e., by adopting the following multi-kernel
learning technique to combine the multiple graph kernels:

k(G,H) =
M∑

m=1

αmkm(G,H) (9)

where km(G,H) denotes the kernel function over the m-th
thresholded networks across brain networks G and H, and αm

is a no-negative weight parameter with
∑M

m=1 αm = 1. Follow-
ing work in [48], we adopt a coarse-grid search approach via
cross-validation on the training subjects to determine the opti-
mal αm . Once the optimal parameter αm(m = 1, 2, · · · , M)
is obtained, multiple kernels will be transform into single
kernel, so traditional SVM technique can be directly applied
for classification.

IV. RESULTS

In this section, we present our experimental settings, results
of brain disease classification and comparison between our
proposed method and several state-of-the-art network-based
methods.

A. Methods for Comparison

We compare our proposed sub-network kernels to the state-
of-the-art kernels that are selected to represent three major
groups of graph kernels, i.e., defined on subtrees, shortest
paths, and edges, respectively. Those graph kernels belong
to the Weisfeiler-Lehman graph kernel framework proposed
in [43] (thus denoted as WL-subtree, WL-shortestpath and
WL-edge, respectively, in this paper). Also, we compare with
the graph kernels defined in [11] for measuring the similarity
of ego network (denoted as Ego-net in this paper) and shortest-
path kernels proposed in [40] (denoted as Shortest-path in
this paper). It is worth noting that all graph kernels used for
comparison are constructed by ignoring the label information
of nodes in the brain networks. Besides, we also compare with
the baseline method using only local topological measures
(i.e., weighted clustering coefficients [22]) as features, where
t-test is used for feature selection and a linear SVM is used
to perform classification.

B. Experimental Setting

In our experiments, two kinds of binary classification
tasks are performed, i.e., 1) MCI vs. NC classification, and

TABLE II

CLASSIFICATION RESULTS OF ALL METHODS. ACC:
ACCURACY, BAC: BALANCED ACCURACY

2) early MCI (EMCI) vs. late MCI (LMCI) classification.
We evaluate the classification performance using the leave-
one-out (LOO) cross-validation with a SVM classifier. The
performances of all methods are evaluated by computing the
classification accuracy, balanced accuracy (i.e., the average
accuracy obtained on either class), and area under receiver
operating characteristic (ROC) curve (AUC).

In our study, The SVM is implemented based on the
LIBSVM library [49] with the default parameter values. A sta-
tistical t-test with the same threshold (i.e., p-value< 0.01)
is performed to construct the discriminative network. For
simplicity, we adopt five different values (i.e., T = {0.30, 0.35,
0.40, 0.45, 0.50}) to threshold the obtained discriminative
networks. The corresponding average connection density
(i.e., the fraction of present connections to all possible connec-
tions) of each threshold is located in the interval [30%, 70%].
It has been reported that the average connection density
interval of [25%, 75%] demonstrates higher classification per-
formance [28]. In the classification step, the optimal parameter
αm is learned based on another LOO cross-validation on the
training subjects via a grid search, using the range from 0 to 1
with step size of 0.1.

C. Classification Performance

Classification results of all methods are summarized
in Table II. For comparison, in Fig. 5, we also give the clas-
sification performances of different methods under different
single thresholded sub-networks. As shown in Table II, our
proposed method consistently outperforms other methods in
both classification tasks. Specifically, our proposed method
yields accuracies of 82.6% and 74.8% for MCI vs. NC and
EMCI vs. LMCI classification, respectively, while the best
accuracies of the competing methods are 76.5% and 70.7%,
respectively. Also, our proposed method yields balanced accu-
racies of 75.5% and 72.6% in both classification tasks, respec-
tively, while the best balanced accuracies of other methods
are 67.5% and 67.4%, respectively. In addition, the AUC of
proposed method, respectively, is 0.78 and 0.72 in two tasks,
which indicates excellent diagnostic power. Besides, we could
observe from Fig. 5 that 1) the combination of multiple
thresholded networks performs significantly better than the
method using any single thresholded network alone, and 2) the
performance of our graph kernel on single thresholded network
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Fig. 5. Classification performances of different methods with single or multiple thresholed network, in (a) MCI vs. NC classification, and (b) EMCI vs.
LMCI classification. Here, T1, T2, T3, T4, and T5 denote using the single thresholded network, respectively, while “combined” denotes using all thresholded
networks.

also outperforms the performances of the state-of-the-art graph
kernels, which again shows the efficacy of our proposed graph
kernel.

In addition, for better comparison, we also test the per-
formance of AD vs. NC and AD vs. MCI classifications
with the same experiment setting. Table S3 in the Supporting
Information gives the results of all methods. As we can see
from Table S3, the proposed method consistently performed
better than the competing methods for AD vs. NC and AD vs.
MCI classifications, which further demonstrates the efficacy
of our proposed method.

D. Discriminative Power of Proposed Graph Kernels

In this subsection, we investigate the discriminative power
of our proposed graph kernels. In the step of constructing
discriminative networks, since the training subjects are slightly
different in different LOO cross-validation folds, and the
selected ROIs by t-test based feature selection are often
different, thus the corresponding constructed discriminative
networks are also different. Therefore, we first construct a
common discriminative network from the original connectivity
network of each subject, with its nodes corresponding to the
ROIs occurred in all LOO cross-validations while its weights
corresponding to those in the original connectivity network.
Then, we use the same thresholds as used in the classification
step to simultaneously threshold this common discriminative
sub-network. Finally, based on each thresholded common
discriminative sub-network, we perform a significance test
between two groups of graph kernels, i.e., the graph kernels
constructed on intra-class subjects (i.e., subjects with the same
class label) and the graph kernels constructed on inter-class
subjects (i.e., subjects with the different class label), using the
standard paired t-test.

The obtained p-values for the five thresholded common
discriminative networks are 2.39 × 10−4, 1.22 × 10−8,

2.04 × 10−3, 2.31 × 10−10 and 7.76 × 10−5, respectively.
These results show the values of graph kernel constructed on
intra-class subjects are significantly larger than those defined
on inter-class subjects (i.e., with very small corresponding
p-values), which indicates our proposed graph kernels can
capture the topological similarity of brain networks for brain
disease classification.

E. Important Brain Regions

Furthermore, in this subsection, we investigate the impor-
tance of ROIs (i.e., brain regions) based on our proposed
graph kernel. Since the kernel defined in Eq. 5 measures the
similarity of each ROI across brain networks, we can identify
some important brain regions according to their classification
performance using this kernel. Specifically, we also construct
the common discriminative network from all LOO cross-
validations using the same approach as described in the above
subsection, and simultaneously threshold this network with
the same five different thresholds. Then, for each thresholded
network, we construct the kernels on each ROI among sub-
network sets from that ROI across brain networks accord-
ing to Eq. 5, and compute the accuracy of each ROI for
MCI classification with SVM classifier via a LOO cross-
validation strategy. Finally, we rank these ROIs according to
their classification accuracy and select the top 10 ROIs with
the highest classification accuracy. Table S2 in the Supporting
Information gives those ROIs selected from each thresholded
networks. Figure 6 also shows all those ROIs. These selected
ROIs include hippocampus, cingulate, parahippocampal gyrus,
amygdala, heschl gyrus and temporal gyrus, which are con-
sistent with those reported in that previous studies.

F. Connectivity Analysis

To analyze the connectivities between those selected ROIs
in the above section and to visually show the differences
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Fig. 6. The important ROIs selected by our proposed sub-network kernel.

on connectivity networks for patients and normal controls,
we also compute the average network based on all selected
ROIs in Fig. 6. Specifically, for each group (i.e., MCI
patients or normal controls), we define an average network
based on all selected ROIs with each connection as the average
of connectivity strength of corresponding edge in the original
brain networks for subjects from the same group, and compute
the connectivity difference between patient group and normal
control (NC) group. Fig. 7 graphically shows the obtained
results, where color in Fig. 8 denote the difference of connec-
tivity strength. As we can see from Fig. 7, the connectivity
strengths in MCI group are lower than those in NC group
in almost all cases. This result is consistent with previous
findings using group analysis method. On the other hand,
to visualize the topology of connectivity network for MCI
and NC, we construct a thresholded average connectivity sub-
network from the average connectivity network of each group,
based on the ROIs selected in each thresholded network (listed
in Table S2 in Supporting Information). For instance, the ROIs
selected in each thresholded network are used to define an
average connectivity network with the nodes corresponding
to the selected ROIs and the connections corresponding to
the connections in the average connectivity network of each
group, and the value used for thresholding the discriminative
connectivity networks is also used to threshold this average
connectivity sub-network. Fig. 8 plots those thresholded aver-
age connectivity sub-networks. Here, T1, T2, T3, T4, T5 denote
the single thresholded average connectivity sub-networks,
respectively. Each node in Fig. 8 represents an ROI, and
each edge in Fig. 8(a)-(b) represents the connectivity between
each pair of ROIs. While, each edge in Fig. 8(c) denotes the
changed connectivity between MCI and NC groups, with blue
edges and red edges denoting the decreasing and increasing
functional connectivity in MCI patient, respectively. As can be
seen from Fig. 8, compared with NC group, the connections
in MCI group are significantly reduced, which again sug-
gests possible disruption in connectivity between those ROIs,
as reported in the previous studies.

V. DISCUSSION

In this paper, we have proposed a novel sub-network kernel
for similarity computation of brain networks. The key of our

Fig. 7. Difference in average connectivity networks based on all selected
ROIs between NC and MCI groups. Here, colors denote the amounts of
difference between two groups on different pairs of ROIs.

proposed kernel is to take into account the inherent character-
istics of brain network and capture the multi-level topological
properties on nodes of brain networks. Furthermore, we built a
sub-network kernel based learning framework for MCI classi-
fication. We have evaluated the performance of our proposed
method on a real MCI dataset from ADNI via LOO cross-
validation to ensure the generalization of the classifier. The
experimental results show that, compared with the state-of-
the-art graph kernels, our proposed sub-network kernel can
significantly improve brain disease classification performance,
thus can be potentially used for automated image-based classi-
fication of brain diseases. In addition, based on proposed graph
kernel, we have identified disease-related brain regions and
found that these brain regions are related with MCI disease and
have been widely reported in the previous studies. It is worth
noting that our proposed graph kernel is a general similarity
measure for brain networks, which can also be applied to
other similarity-based brain network analysis tasks, such as the
regression/prediction of some clinical scores (e.g., MMSE).

A. Significance of Results

Graph objects have been widely used for brain network
analysis (e.g., classification). In the graph-based network
analysis method, a fundamental challenge task is how to
compute the similarity of a pair of graphs (i.e., networks).
Among all kinds of methods, kernel methods provide a general
framework to solve this problem. However, existing graph
kernels mainly focus on general graphs and thus ignore some
specific characteristics of brain network. In this paper, we have
built a novel brain-network-oriented kernel and applied it to
brain disease classification. The experimental results on a real
MCI dataset show the efficiency of our proposed method,
compared with the state-of-the-art methods.

In addition, some important ROIs have been identified
based on our proposed graph kernel. These ROIs include
hippocampus [14], [50], cingulate [50], [51], parahippocampal
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Fig. 8. Illustration of thresholded average connectivity networks with selected ROIs (listed in Table S2 in the Supporting Information) for (a) top row: NC
group and (b) middle row: MCI group, along with (c) bottom row: their group difference of thresholded average connectivity network. Here, red nodes denote
brain regions, the connections in (a) and (b) denote the connectivities between brain regions. While the connections with different colors in (c) denote increase
(red connection) or decrease (blue connection) of functional connectivity in MCI patients, compared with NC group.

gyrus [10], amygdala [51], heschl gyrus [52] and temporal
gyrus [53], which have been reported in the previous MCI
studies. For example, hippocampal formation is one of the
first brain regions to suffer damage with memory loss and
disorientation. It is widely reported that the hippocampal
formation is damaged heavily in early AD and MCI [14],
[50], and is a focal point for pathology [54]. The amygdala,
as another important subcortical region, is one of the most
vulnerable structures in the early stage of AD. Studies have
reported the alteration of the functional connectivity of the
amygdala in MCI patients [55].

Further analysis of connectivity between identified brain
regions shows that the connectivity strengths in MCI group
are lower than those in NC group in almost all cases, which is
also consistent with the previous studies using group analysis
method. For example, Wang et al. [24] have found disrupted
functional connectivity between different functional modules
by investigating functional connectome of MCI patients.
Bai et al. [56] also found the evidence of impaired connec-
tivity in the MCI group by exploring the properties of whole-
brain networks. Other studies have found a loss of small-world

characteristics in AD/MCI patients [9], [15], [52]. Besides,
a series of abnormal connectivities have been reported in both
EMCI and LMCI [57], [58].

These changes may suggest that the connectivities between
some brain regions are disrupted by the disease. These results
may also suggest that these disrupted connectivities may lead
to reduced functional integration and information processing
capability of the brain, which may account for cognitive
deficits in patients. On the other hand, these changes also
provide an important alternative to explore the properties
of brain connectivity network for classification of brain dis-
eases. Our results demonstrate that the proposed method can
effectively classify MCI from NC, and classify LMCI from
EMCI, by making use of topological properties of functional
connectivity networks, which also provides empirical evidence
for disrupted network organization in MCI (including EMCI
and LMCI) patients.

B. Effect of Parameters

In our proposed graph kernel, there are two parameters, i.e.,
the numbers d and h. The number d controls the number
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Fig. 9. The classification performance of our proposed method using different parameters (i.e., d and h) in (a) MCI vs. NC classification, and (b) EMCI vs.
LMCI classification.

of algorithm iterations in computing the mathematical rep-
resentation of sub-networks. The number h controls the size
of a sub-network set. To investigate the effects of these two
parameters on the classification performance of our proposed
graph kernel, we test different values for the number d from
{3, 4, 5, 6, 7, 8}, and also the number h from {1, 2, 3}. Fig. 9
shows the classification results with respect to different values
of the numbers d and h. For comparison, in Fig. 9 we also give
the classification performance of Ego-net method proposed
in [11] with different values of d (i.e., d = {3, 4, 5, 6, 7, 8}).
As we can see from Fig. 9 and Table II, for all parameter val-
ues, our proposed method significantly outperforms the Ego-
net method on both classification tasks. Also, for most values
of d and h, the classification performance of our defined graph
kernel outperforms the performances of other graph kernels,
which further shows the efficacy of our graph kernel. Besides,
Fig. 9 shows that, with a fixed h, the curves varied with the
value of d are very smooth, which shows that our method is
very robust to the parameter d . Moreover, from Fig. 9 we can
observe that, given a fixed d , the classification performance
is largely affected by different values of h. When h = 2, our
graph kernel obtains the best classification performance. These
results imply that the selection of h is critical for our proposed
graph kernel. This is reasonable since the number h controls
the size of a sub-network set for each node in a brain network,
and thus affects the similarity measurement of brain networks.

C. Influence of Different Brain Network Modeling Methods

A number of modeling methods have been proposed for esti-
mating the functional connectivity networks, with the varying
degrees of validation [59]. To evaluate the robustness of our
method for different network modeling methods, we test the
classification performance of our proposed graph kernels by
using sparse inverse covariance estimation (SICE) [60], also
called Gaussian graphical model, for brain network estimation.
Specifically, for each subject, we use the resulting sparse

inverse covariance matrix �̂ from SICE to build connectivity
network, where edges correspond to the conditional partial
correlation between nodes (i.e., ROIs). That is, if �̂i j = 0,
then ROIs i and j are conditionally independent, and there is
no edge between them (i.e., Wij = 0); otherwise, Wij = 1.
Since the regularization parameter λ in SICE controls the
sparsity of inverse covariance matrix �̂, we simultaneously use
five different values of λ (i.e., λ = {0.2, 0.3, 0.4, 0.5, 0.6}) to
build five brain networks with different connection densities.

Then, we directly compute the proposed graph kernels on the
brain networks constructed with each λ value across different
subjects, and use the multi-kernel SVM technique defined in
Eq. 9 for classification. Table S4 in the Supporting Information
gives the classification results of our proposed graph kernel.

The results show that our proposed graph kernel, respec-
tively, yields accuracies of 83.2% and 73.7% for MCI vs. NC
and EMCI vs. LMCI classifications, indicating the robustness
of our proposed graph kernel for different brain network mod-
eling methods. In addition, for comparison, Table S4 also gives
the classification performance of other graph kernels, includ-
ing Ego-net, Shortest-path, WL-subtree, WL-shortestpath and
WL-edge. These results further demonstrate the efficacy of our
proposed method.

D. Effect of Discriminative Networks

In the proposed SKL framework, we construct the discrim-
inative networks from the original functional connectivity net-
works for improving the classification performance. In order to
evaluate the effect of this step, we test the performance of our
proposed SKL framework without constructing the discrimina-
tive networks. Specifically, we directly threshold the original
functional connectivity networks derived from rs-fMRI data
using the same five different thresholds, and further construct
five sub-network kernels and perform the multi-kernel SVM
classification. Table S5 in the Supporting Information gives
the classification results of our proposed graph kernel. As we
can see from Table II and Table S5, the results of the
proposed SKL using discriminative networks are better than
those of the method without using discriminative networks,
indicating the importance of constructing discriminative net-
works. For comparison, Table S5 also gives the classification
performance of other methods without using discrimina-
tive networks, including Ego-net, Shortest-path, WL-subtree,
WL-shortestpath and WL-edge. The results show that, com-
pared with the competing methods, our proposed graph kernel
still achieves the best performance, indicating again the effi-
cacy of our proposed method.

E. Importance of Network Topology

In our studies, the sub-network-based topological properties
are used to construct the graph kernel for measuring the
similarity of brain networks. To evaluate the importance of
topological properties of network, we do another experiment
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to test the classification performance by directly using the
adjacency matrices of brain networks. Specifically, we con-
vert the adjacency matrix of functional connectivity network
derived from rs-fMRI into a vector, followed by t-test for
feature selection and a linear SVM for classification. In both
tasks of MCI vs. NC classification and EMCI vs. LMCI
classification, this achieves accuracies of 59.7% and 53.5%,
respectively. These results are inferior to those of graph-
kernel-based methods (see Table II and Fig. 5), suggesting
that the topological properties of networks help improve the
performance of brain disease classification.

F. Limitation

Currently, this study is limited by the following four aspects.
First, more priori knowledge about brain disease may be
embed into network similarity measurement to improve the
learning performance. For instance, there may have differ-
ent effects on different brain regions by a specific brain
disease, thus different brain regions should have their own
importance for network similarity measurement, which is not
considered in current studies. Second, the definition of nodes
(i.e., brain parcellation) is a very important step for brain
network analysis. Existing studies have shown that the connec-
tivity networks constructed with different brain parcellations
exhibit different topological properties [61], while our current
work did not analyze the effects of different brain parcel-
lations on the performance of our proposed method. Third,
we construct the graph kernel by comparing the similarity
of sub-networks. However, the label information of nodes in
sub-networks is ignored in our proposed method, consider-
ing that those sub-networks usually have different topologies
(i.e., containing different nodes and edges). It is very inter-
esting to explore label information for further improving
the performance of graph kernels. Finally, there are only
183 studied subjects used in the experiments. In the future
work, we will further evaluate our proposed method on a larger
size of dataset.

VI. CONCLUSIONS

The similarity measurement between graphs (or networks)
is a fundamental challenge in network-based analysis. In this
paper, we have built a novel sub-network kernel for measuring
the similarity of a pair of brain networks. Different from
existing graph kernels, our constructed graph kernels can effec-
tively reflect the specific characteristics of brain networks and
also capture multi-level topological properties of each node
in brain networks. We have further developed a sub-network
kernel based learning framework for MCI classification using
rs-fMRI data, with the experimental results demonstrating the
efficacy of our proposed method.
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